[54] Zhang, J.;‖ Zeng, G.;‖ Zhu, S.;‖ Tao, H.;‖ Lai, W.; Bao, J.; Lian, C.;* Su, D.;* Shao, M.;* Huang, H.* Steering CO2 Electroreduction Pathway toward Ethanol via Surface Hydroxyl Species Induced Non-Covalent Interaction. Proc. Natl. Acad. Sci. 2023, In Press.
[53] Gao, L.;‖ Bao, F.;‖ Tan, X.;* Li, M.; Shen, Z.; Chen, X.; Tang, Z.; Lai, W.; Lu, Y.; Huang, P.; Ma, C.; Smith, S.; Ye, Z.; Hu, Z.;* Huang, H.* Engineering a local potassium cation concentrated microenvironment toward the ampere-level current density hydrogen evolution reaction. Energy Environ. Sci. 2023, 10.1039/D2EE02836K. [PDF]
[52] Ma, Z.;‖ Yang, Z.;‖ Lai, W.;* Wang, Q.; Qiao, Y.; Tao, H.; Lian, C.; Liu, M.; Ma, C.; Pan, A.; Huang, H.* CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 2022, 10.1038/s41467-022-35415-x. [PDF]
[51] Zhang, H.;‖ Qiao, Y.;‖ Wang, Y.; Zheng, Y.; Huang, H.* In situ oxidative etching-enabled synthesis of hollow Cu2O nanocrystals for efficient CO2RR into C2+ products. Sustain. Energy Fuels. 2022, 6(21), 4860-4865. [PDF]
[50] Lai, W.;‖ Yu, P.;‖ Gao, L.; Yang, Z.; He, B.;* Huang, H.* Boosting the Interfacial Hydrogen Migration for Efficient Alkaline Hydrogen Evolution on Pt-Based Nanowires. J. Mater. Chem. A 2022, 10.1039/D2TA05156G. [PDF]
[49] Lai, W.;‖ Qiao, Y.;‖ Zhang, J.; Lin, Z.;* Huang, H.* Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 10.1039/D2EE00472K. [PDF]
[48] Zheng, Y.; Tan, J.; Zhang, G.; Ma, Y.; Liu, F.; Liu, M.; Wang, Y.;* Huang, H.* Yolk-Shell AuAgPt Alloy Nanostructures with Tunable Morphologies: Plasmon-Enhanced Photothermal and Catalytic Properties. Advanced Energy and Sustainability Research 2022, 10.1002/aesr.202100222. [PDF]
[47] Yang, F.; Gao, L.; Lai, W.; Huang, H.* Recent advance on structural design of high-performance Pt-based nanocatalysts for oxygen reduction reaction. Advanced Sensor and Energy Materials 2022, 10.1016/j.asems.2022.100022. (Invited review) [PDF]
[46] Li, X.;‖ Yin, B.;‖ Gao, L.; Li, X.; Huang, H.;* Song, G.;* Zhou, Y.* One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy.
Nano Res. 2022, 10.1007/s12274-022-4474-4. [PDF]
[45] Yuan, Y.;‖ Wang, Q.;‖ Qiao, Y.;‖ Chen, X.;* Yang, Z.; Lai, W.; Chen, T.; Zhang, G.; Duan, H.; Liu, M.;* Huang, H.* In Situ Structural Reconstruction to Generate the Active Sites for CO2 Electroreduction on Bismuth Ultrathin Nanosheets. Adv. Energy Mater. 2022, 10.1002/aenm.202200970. [PDF]
[44] Zheng, Y.;‖ Zhang, J.;‖ Ma, Z.;‖ Zhang, G.; Zhang, H.; Fu, X.; Ma, Y.; Liu, F.; Liu, M.; Huang, H.* Seeded growth of gold–copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ Products. Small, 2022, 18(19), 2201695. [PDF]
[43] Zhang, J.;‖ Zeng, G.;‖ Chen, L.;‖ Lai, W.; Yuan, Y.; Lu, Y.; Ma, C.; Zhang, W.;* Huang, H.* Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 10.1007/s12274-022-4177-x. [PDF]
[42] Qiao, Y.;‖ Lai, W.;‖ Huang, K.;‖ Yu, T.; Wang, Q.; Gao, L.; Yang, Z.; Ma, Z.; Sun, T.; Liu, M.; Lian, C.;* Huang, H.* Engineering the Local Microenvironment over Bi Nanosheets for Highly Selective Electrocatalytic Conversion of CO2 to HCOOH in Strong Acid. ACS Catal. 2022, 12(4), 2357-2364. [PDF]
[41] Gao, L.;‖ Yang, Z.;‖ Sun, T.;‖ Tan, X.; Lai, W.; Li, M.; Kim, J.; Lu, Y.; Choi, S.; Zhang, W.; Ma, C.; Smith, S.; Zhou, Y.;* Huang, H.* Autocatalytic Surface Reduction-Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Adv. Energy Mater. 2022, 10.1002/aenm.202103943. [PDF]
[40] Lai, W.;‖ Ma, Z.;‖ Zhang, J.; Yuan, Y.; Qiao, Y.; Huang, H.* Dynamic Evolution of Active Sites in Electrocatalytic CO2 Reduction Reaction: Fundamental Understanding and Recent Progress. Adv. Funct. Mater. 2022, 10.1002/adfm.202111193. [PDF]
[39] Gao, L.;‖ Sun, T.;‖ Tan, X.;‖ Liu, M.;* Xue, F.; Wang, B.;* Zhang, J.; Lu, Y.; Ma, C.; Tian, H.; Yang, S.; Smith, S.; Huang, H.* Trace Doping of Early Transition Metal Enabled Efficient and Durable Oxygen Reduction Catalysis on Pt-based Ultrathin Nanowires. Appl. Catal. B-Environ. 2021, 10.1016/j.apcatb.2021.120918. [PDF]
[38] Zhang, J.; Sewell, C.; Huang, H.;* Lin, Z.* Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO2 Valorization. Adv. Energy Mater. 2021, 10.1002/aenm.202102767. [PDF]
[37] Yao, Z.;‖ Yuan, Y.;‖ Cheng, T.;‖ Gao, L.;‖ Sun, T.; Lu, Y.; Zhou, Y.;* Galindo, P.; Yang, Z.; Xu, L.; Yang, H.; Huang, H.* Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. Nano Lett. 2021, 10.1021/acs.nanolett.1c03805. [PDF]
[36] Bao, F.;‖ Yang, Z.;‖ Yuan, Y.;‖ Yu, P.; Zeng, G.; Cheng, Y.; Lu, Y.; Zhang, J.;* Huang, H.* Synergistic Cascade Hydrogen Evolution Boosting via Integrating Surface Oxophilicity Modification with Carbon Layer Confinement. Adv. Funct. Mater. 2021, 10.1002/adfm.202108991. [PDF]
[35] Jiao, S.;* Fu, X.; Huang, H.* Descriptors for the Evaluation of Electrocatalytic Reactions: d-Band Theory and Beyond. Adv. Funct. Mater. 2021, 10.1002/adfm.202107651. [PDF]
[34] Yuan, Y.; Yang, Z.; Lai, W.; Gao, L.; Li, M.; Zhang, J.;* Huang, H.* Intermetallic Compounds: Liquid-Phase Synthesis and Electrocatalytic Applications. Chem.-Eur. J. 2021, 10.1002/chem.202102500. [PDF]
[33] Jiao, S.;‖ Fu, X.;‖ Ruan, S.; Zeng, Y.;* Huang, H.* Breaking the Periodic Arrangement of Atoms for the Enhanced Electrochemical Reduction of Nitrogen and Water Oxidation. Sci. China Mater. 2021, 10.1007/s40843-021-1729-2. [PDF]
[32] Zhang, J.;‖ Yu, P.;‖ Zeng, G.; Bao, F.; Yuan, Y.;* Huang, H.* Boosting HMF Oxidation Performance via Decorating Ultrathin Nickel Hydroxide Nanosheets with Amorphous Copper Hydroxide Islands. J. Mater. Chem. A 2021, 9, 9685-9691. [PDF]
[31] Zheng, Y.; Wang, Y.; Yuan, Y.;* Huang, H.* Metal‐based Heterogeneous Electrocatalysts for Electrochemical Reduction of Carbon Dioxide to Methane: Progress and Challenges. ChemNanoMat. 2021, 7, 502-514. [PDF]
[30] Wang, Y.;‖ Yuan, Y.;‖ Huang, H.* Recent Advances in Pt‐based Ultrathin Nanowires: Synthesis and Electrocatalytic Applications. Chin. J. Chem. 2021, 39, 1389-1396. [PDF]
[29] Zhang, J.;‖ Yuan, Y.;‖ Gao, L.; Zeng, G.; Li, M.; Huang, H.* Stabilizing Pt-based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Adv. Mater. 2021, 33(20), 2006494. [PDF]
[28] Guo, J.;‖ Gao, L.;‖ Tan, X.;‖ Yuan, Y.; Kim, J.; Wang, Y.; Wang, H.; Zeng, Y.; Choi, S.-Il.; Smith, S.C.; Huang, H.* Template-Directed Rapid Synthesis of Pd-Based Ultrathin Porous Intermetallic Nanosheets for Efficient Oxygen Reduction. Angew. Chem. Int. Ed. 2021, 60, 10942-10949. [PDF]
[27] Yu, D.;‖ Gao, L.;‖ Sun, T.;‖ Guo, J.; Yuan, Y.; Zhang, J.; Li, M.; Li, X.;* Liu, M.; Ma, C.; Liu, Q.;* Pan, A.; Yang, J.; Huang, H.* Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO2 Electroreduction. Nano Lett. 2021, 21, 1003-1010. [PDF]
[26] Zhang, L.;‖ Jiao, S.;‖ Tan, X.;‖ Yuan, Y.; Xiang, Y.; Zeng, Y.; Qiu, J.;* Peng, P.;* Sean C. Smith, Huang, H.* Theory-Guided Construction of Electron-Deficient Sites via Removal of Lattice Oxygen For the Boosted Electrocatalytic Synthesis of Ammonia. Nano Res. 2021, 14, 1457-1464. [PDF]
[25] Jiao, S.;‖ Fu, X.;‖ Zhang, L.; Zhang, L.; Ruan, S.; Zeng, Y.;* Huang, H.* The Lab-to-Fab Journey of Copper-Based Electrocatalysts for Multi-Carbon Production: Advances, Challenges, and Opportunities. Nano Today. 2021, 36, 101028. [PDF]
[24] Li, M.; Yuan, Y.; Yao, Y.; Gao, L.; Zhang, J.;* Huang, H.* Applications of Metal Nanocrystals with Twin Defects in Electrocatalysis.Chem. Asian J. 2020, 15, 3254-3265. [PDF]
[23] Huang, H.; Chen, R.; Liu, M.; Wang, J.; Moon J. Kim; Ye, Z. and Xia, Y.* Aqueous Synthesis of Pd-M (M=Pd, Pt, and Au) Decahedra with Concave Facets for Catalytic Applications. Top.Catal. 2020, 63, 664-672. [PDF]
[22] Li, X.;‖ Li, X.;‖ Liu, C.;‖ Huang, H.;* Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.;* Yang, J.; Zeng, J.* Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Lett. 2020, 20, 1403-1409. [PDF]
[21] Jiao, S.;‖ Fu, X.;‖ Zhang, L.; Zeng, Y.;* Huang, H.* Point-Defect-Optimized Electron Distribution for Enhanced Electrocatalysis: Towards the Perfection of the Imperfections. Nano Today. 2020, 30, 100833. [PDF]
[20] Gao, L.;‖ Li, X.;‖ Yao, Z.; Bai, H.; Lu, Y.; Ma, C.; Lu, S.; Peng, Z.;* Yang, J.; Pan, A.; Huang, H.* Unconventional p-d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083-18090. [PDF]
[19] Zhu, X.; Gao, L.; Tang, L.;* Peng, B.; Huang, H.* Wang, J.; Yu, J.; Ouyang, X.; Tan, J. Ultrathin PtNi Nanozyme Based Self-Powered Photoelectrochemical Aptasensor for Ultrasensitive Cchloramphenicol Detection. Biosens. Bioelectron. 2019, 146, 111756. [PDF]
[18] Jiao, S.;‖ Yao, Z.;‖ Li, M.; Mu, C.; Liang, H.; Zeng, Y.;* Huang, H.* Accelerating Oxygen Evolution Electrocataltsis of Two-dimensional NiFe Layered Double Hydroxide Nanosheets via Space Confined Amorphization. Nanoscale 2019, 11, 18894-18899. [PDF]
[17] Guo, J.; Wang, H.; Xue, F.; Yu, D.; Zhang, L.; Jiao, S.; Liu, Y.; Lu, Y.; Liu, M.; Ruan, S.; Zeng, Y.;* Ma, C.;* Huang, H.* Tunable Synthesis of Multiply-Twinned Intermetallic Pd3Pb Nanowire Networks toward Efficient N2 to NH3 Conversion. J. Mater. Chem. A. 2019, 7, 20247-20253. [PDF]
[16] Jiao, S.; Yao, Z.; Xue, F.; Lu, Y.; Liu, M.; Deng, H.; Ma, X.; Liu, Z.;* Ma, C.; Huang, H.;* Ruan, S.; Zeng, Y.* Defect-Rich One-Dimensional MoS2 Hierarchical Architecture for Efficient Hydrogen Evolution: Coupling of Multiple Advantages into One Catalyst. Appl. Catal. B: Environ. 2019, 258, 117946. [PDF]
[15] Zhang, Z.;‖ Ahmad, F.;‖ Zhao, W.;‖ Yan, W.; Zhang, W.;* Huang, H.;* Ma, C.; Zeng, J.* Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling Between Indium Oxide and Reduced Graphene Oxide. Nano Lett. 2019, 19, 4019-4034. [PDF]
[14] Li, K.;‖ Li, X.;‖ Huang, H.;* Luo, L.; Li, X.; Yan, X.; Ma, C.; Si, R.; Yang, J.; Zeng, J.* One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages in One Catalyst. J. Am. Chem. Soc. 2018, 140, 16159-16167. [PDF]
[13] Ahmad, F.; Luo, L.; Li, X.; Huang, H.;* Zeng, J.* Boosting Fuel Cell Catalysis by Surface Doping of W on Pd Nanocubes. Chin. J. Catal. 2018, 39, 1202-1209. [PDF]
[12] Huang, H.;‖ Ruditskiy, A.;‖ Choi, S.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y.* One-Pot Synthesis of Penta-Twinned Pd Nanowires and Their Enhanced Electrocatalytic Properties. ACS Appl. Mater. Interfaces. 2017, 9, 31203-31212. [PDF]
[11] Huang, H.;‖ Li, K.;‖ Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.;* Yang, J.; Peng, Z.*; Zeng, J.* Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. J. Am. Chem. Soc. 2017, 139, 8152-8159. [PDF]
[10] Li, J.;‖ Luo, L.;‖ Huang, H.;* Ma, C.; Ye, Z.; Zeng, J.*; He, H.* 2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 1161-1168. [PDF]
[9] Huang, H.;‖ Jia, H.;‖ Liu, Z.;‖ Gao, P.; Zhao, J.; Luo, Z.; Yang, J.*; Zeng, J.* Understanding of Strain Effect in Electrochemical Reduction of CO2: Using Pd Nanostructures as An Ideal Platform. Angew. Chem. Int. Ed. 2017, 56, 3594-3598. [PDF]
[8] Huang, H.;‖ Liu, M.;‖ Li, J.;‖ Luo, L.; Zhao, J.; Luo, Z.; Wang, X.;* Ye, Z.; He, H.;* Zeng, J.* Atomically Thin Cesium Lead Bromide Perovskite Quantum Wires with High Luminescence. Nanoscale 2017, 9, 104-108. [PDF]
[7] Huang, H.; Zhang, L.; Lv, T.; Ruditskiy, A.; Liu, J.; Ye, Z.; Xia, Y.* Five‐Fold Twinned Pd Nanorods and Their Use as Templates for the Synthesis of Bimetallic or Hollow Nanostructures. ChemNanoMat 2015, 1, 246-252. [PDF]
[6] Huang, H.; Wang, Y.; Ruditskiy, A.; Peng, H. C.; Zhao, X.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y.* Polyol Syntheses of Palladium Decahedra and Icosahedra as Pure Samples by Maneuvering the Reaction Kinetics with Additives. ACS nano 2014, 8, 7041-7050. [PDF]
[5] Huang, H.; Liu, Y.; Wang, J.; Gao, M.; Peng, X.;* Ye, Z. Self-assembly of Mesoporous CuO Nanosheets–CNT 3D-Network Composites for Lithium-Ion Batteries. Nanoscale 2013, 5, 1785-1788. [PDF]
[4] Huang, H.; Zhang, L.; Wu, K.; Yu, Q.; Chen, R.; Yang, H.; Peng, X.;* Ye, Z.* Hetero-metal Cation Control of CuO Nanostructures and Their High Catalytic Performance for CO Oxidation. Nanoscale 2012, 4, 7832-7841. [PDF]
[3] Huang, H.; Yu, Q.; Ye, Y.; Wang, P.; Zhang, L.; Gao, M.; Peng, X.;* Ye, Z.* Thin Copper Oxide Nanowires/Carbon Nanotubes Interpenetrating Networks for Lithium Ion Batteries. CrystEngComm 2012, 14, 7294-7300. [PDF]
[2] Huang, H.; Yu, Q.; Peng, X.;* Ye, Z. Single-unit-cell Thick Mn3O4 Nanosheets. Chem. Commun. 2011, 47, 12831-12833. [PDF]
[1] Huang, H.; Yu, Q.; Peng, X.;* Ye, Z. Mesoporous Protein Thin Films for Molecule Delivery. J. Mater. Chem. 2011, 21, 13172-13179. [PDF]